Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bing Liu, ${ }^{\text {a }}$ Ke-Jian Li, ${ }^{\text {b,c }}$ Hai-Bin

 Song ${ }^{c}$ and Qiang Liu ${ }^{\text {a* }}$${ }^{\text {a }}$ Chemistry and Biology College, Tianjin Normal University, 241 Weijin Road, Hexi District, Tianjin 300074, People's Republic of China, ${ }^{\mathbf{b}}$ Key Laboratory of Pesticides \& Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, People's Republic of China, and ${ }^{\text {c State Key Laboratory of }}$ Elemento-Organic Chemistry, Nankai
University, Tianjin, Weijin Road No. 94, Tianjin 300071, People's Republic of China

Correspondence e-mail: liubingnk@188.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.105$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-(4-Chloro-1,3-benzothiazol-2-yl)-3-propylurea monohydrate

In the crystal structure of the title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$-$\mathrm{H}_{2} \mathrm{O}$, the urea derivative molecule, excluding propyl H atoms, displays a roughly planar structure. The water molecules link the urea derivative molecules via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, forming columns parallel to the a axis.

Comment

In recent years, considerable attention has been paid to the investigation of structures and properties of complexes containing 2 -substituted benzimidazoles, benzothiazoles and benzoxazoles because they have been found to possess diverse applications in the fields of medicine, agriculture and industry. For example, 2-trifluoromethylbenzimidazoles are reported to be extremely active herbicides (Burton et al., 1967). The title compound, (I), is useful as an inhibitor of serine/threonine and tyrosine kinases (Cusack et al., 2003). We report here the crystal structure of (I).

(I)

The main molecule of (I) (Fig. 1) is almost planar. The dihedral angle between the $\mathrm{Cl} 1 / \mathrm{N} 1 / \mathrm{S} 1 / \mathrm{C} 1-\mathrm{C} 7$ and $\mathrm{O} 1 / \mathrm{N} 2 / \mathrm{N} 3 /$ $\mathrm{C} 8-\mathrm{C} 11$ planes is $2.34(5)^{\circ}$. The bond lengths and angles are comparable to those observed for a similar structure, 1-butyl-3-(4-chloro-1,3-benzothiazol-2-yl)urea monohydrate (Li et al., 2006).

Figure 1
View of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Received 30 June 2006
Accepted 8 July 2006
$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1) link the water molecules and the urea derivative molecules, forming columns parallel to the a axis.

Experimental

Propan-1-amine (9 mmol) was mixed with a dry tetrahydrofuran $(12 \mathrm{ml})$ solution of phenyl 4 -chloro-1,3-benzothiazol-2-ylcarbamate (3 mmol). The mixture was heated for 20 min at 423 K in a microwave synthetic reactor. After reaction, the solvent was removed under reduced pressure. Colourless single crystals of (I) were obtained from an acetone-water (10:1) solution after 10 d . Analysis calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$: $\mathrm{C} 48.98, \mathrm{H} 4.48, \mathrm{~N} 15.58 \%$; found: C 48.71, H 4.27, N 15.39\%.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=287.76$
Triclinic, $P \overline{1}$
$a=6.8742$ (15) \AA
$b=7.2537(16) \AA$
$c=14.729(2) \AA$
$\alpha=97.509(5)^{\circ}$
$\beta=94.600(8)^{\circ}$
$\gamma=111.419(8)^{\circ}$

Data collection

Rigaku Saturn diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.893, T_{\text {max }}=0.958$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.105$
$S=1.01$
3134 reflections
180 parameters
$V=671.3$ (2) \AA^{3}
$Z=2$
$D_{x}=1.424 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.44 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.24 \times 0.20 \times 0.10 \mathrm{~mm}$

6546 measured reflections 3134 independent reflections 2212 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.9^{\circ}$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0605 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	$0.83(1)$	$2.09(1)$	$2.891(2)$	$162(2)$
$\mathrm{O}^{2}-\mathrm{H} 2 B \cdots{ }^{\mathrm{i}}$	$0.85(1)$	$2.09(1)$	$2.8816(19)$	$155(2)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.88(1)$	$2.43(1)$	$3.164(2)$	$142(2)$
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O}^{2 i}$	$0.90(1)$	$1.95(1)$	$2.8358(19)$	$167(2)$

[^1]

Figure 2
The crystal packing of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.

Water and imine H atoms were located in a difference Fourier map and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distance restraints of 0.84 (1) and 0.90 (1) Å, respectively. C-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.96 (methyl) or $0.97 \AA$ (methylene), and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure (Rigaku/MSC, 2005); software used to prepare material for publication: CrystalStructure.

This work was supported by the National Natural Science Foundation of China (NFSC, grant No. 20432010), MOST (2003CB114400) and the Ministry of Education of China.

References

Burton, D. E., Lambie, A. J. \& Newbold, G. T. (1967). Br. Patent No. 1087561. Cusack, K. P., Scott, B., Arnold, L. D. \& Ericsson, A. M. (2003). US Patent No. 0153568.

Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
Li, K.-J., Ban, S.-R., Cheng, X.-F., Liu, H.-J. \& Chen, W.-B. (2006). Acta Cryst. E62, o2755-o2756.
Rigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.70). Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x+1, y, z$.

